NRH 280 DP

dual output no contact rotary sensor

PERFORMANCE

ELECTRICAL

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement range °</td>
<td>20 to 360 in 1° increments</td>
</tr>
<tr>
<td>Supply voltage Vdc</td>
<td>9 to 30 (unregulated) and 5 ± 0.5 (regulated)</td>
</tr>
<tr>
<td>Over voltage protection Vdc</td>
<td>Up to 40 (-40 to +60°C)</td>
</tr>
<tr>
<td>Maximum supply current mA</td>
<td>≤ 25</td>
</tr>
<tr>
<td>Reverse polarity protection</td>
<td>Yes</td>
</tr>
<tr>
<td>Short circuit protection</td>
<td></td>
</tr>
<tr>
<td>Output to GND</td>
<td>Yes</td>
</tr>
<tr>
<td>Output to supply</td>
<td>In 5V regulated mode only</td>
</tr>
<tr>
<td>Power-on settlement time S</td>
<td>≤ 1</td>
</tr>
<tr>
<td>Resolution %</td>
<td>0.025 of measurement range (12 bit)</td>
</tr>
<tr>
<td>Non-linearity %</td>
<td>≤ ±0.4</td>
</tr>
<tr>
<td>Temperature coefficient ppm/°C</td>
<td>≤ ±30 in 5V supply mode; ≤ ±90 in 9-30V supply mode</td>
</tr>
</tbody>
</table>

*Non-linearity is measured using the least-squares method on a computerised calibration system

Analog Output (order code A1, A4) - see graph on page 31

Voltage output range

<table>
<thead>
<tr>
<th>Supply type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-30V supply Vdc</td>
<td>Absolute voltage, 0.5 to 4.5 (A1) or 0.1 to 4.9 (A4) over measurement range (±3%)</td>
</tr>
<tr>
<td>5V supply Vdc</td>
<td>Ratiometric output voltage - 10 to 90% (A1) or 2 to 98% (A4) of Vs over measurement range (±1%)</td>
</tr>
<tr>
<td>Monotonic range Vdc</td>
<td>0.25 (5%) and 4.75 (95%) nominal (A1)</td>
</tr>
<tr>
<td></td>
<td>0.05 (1%) and 4.95 (99%) nominal (A4)</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Output noise mVrms</td>
<td><1</td>
</tr>
<tr>
<td>Input/output delay mS</td>
<td><2</td>
</tr>
</tbody>
</table>

PWM Output (order code Pn) - see output characteristics on page 31

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM frequency Hz</td>
<td>244 (P1); 500 (P2); or 1000 (P3) ±20% over temperature range</td>
</tr>
<tr>
<td>PWM levels 9-30V supply Vdc</td>
<td>0 and 5 nominal (±3%)</td>
</tr>
<tr>
<td></td>
<td>0 and Vs (±1%)</td>
</tr>
<tr>
<td>Duty cycle %</td>
<td>10 to 90 over measurement range</td>
</tr>
<tr>
<td>Monotonic range %</td>
<td>5 and 95 nominal</td>
</tr>
<tr>
<td>Load resistance Ω</td>
<td>10k minimum (resistive to GND)</td>
</tr>
<tr>
<td>Rise/fall time µS</td>
<td><15</td>
</tr>
</tbody>
</table>

MECHANICAL

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical angle °</td>
<td>360, continuous</td>
</tr>
<tr>
<td>Maximum rotational speed °/sec</td>
<td>3600</td>
</tr>
<tr>
<td>Weight g</td>
<td><55 (with bolt type magnet carrier)</td>
</tr>
<tr>
<td>Mounting</td>
<td>Use 2 x M4 socket head cap screws and M4 washer - maximum tightening torque 2Nm. Bolt (B) or plug (P) type magnet holders are available for the customer to assemble to their own equipment. We also offer a magnet only (M) option for OEM’s to integrate into their design.</td>
</tr>
<tr>
<td>Phasing</td>
<td>When magnet ident mark is facing toward the sensor and cable exit, output is at mid travel. The sensor housing allows for ±10° adjustment via the mounting flange slots.</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL

Protection class
IP68 (to 2m depth for 2 hours) and IP69K
Life
This product has no contacting parts.
Dither life
Contactless - no degradation due to shaft dither
Operational temperature° C
-40 to +140 (5V supply) and +170°C for 72 hours
-40 to +135.2 (9V supply option) Derate upper temperature limit by 1.7°C for every 1V increase in supply: e.g. -40 to +100 @ 30V
Storage temperature ° C
-55 to +140
Vibration
BS EN 60068-2-64:1995 Sec 8.4 (3.1.4gn rms) 20 to 2000Hz Random
Shock
3m drop onto concrete and 2500g
EMC Immunity level
BS EN 61000-4-3:1999, to 100V/m, 80MHz to 1GHz and 1.4GHz to 2.7GHz (2004/108/EC)

† See Maximum Operating Temperature - derating graph on page 30.
If the maximum operating temperature is exceeded, the voltage regulator will shut down to protect the device from overheating

OPTIONS

Measurement range (angle)
Select from 20° to 360° in 1° increments (factory programmed) for each output channel
Output
Analog voltage (An) or PWM (Pn)
Output direction
Both clockwise, both anticlockwise or one CW, one ACW
Magnet holder
Bolt (B) or plug (P) types, or magnet only (M)
Cable length m
0.5
OEM options
Outputs can be programmed to provide: non linear laws; switch outputs; clamp voltages; different output phasing CH1/CH2; faster input/output delay; extended analog range; and output mapping for potentiometer replacements.

AVAILABILITY

All standard configurations can be supplied rapidly from the factory – check with your local supplier for more details

ORDERING CODES

NRH280DP/...../...../...../...../...../.....

Measurement range
CH1 = angle in °
CH2 = angle in °
Output
A1 = Analog 0.5-4.5Vdc
A4 = Analog 0.1-4.9Vdc
P1 = PWM, 244Hz
P2 = PWM, 500Hz
P3 = PWM, 1000Hz
Direction
3 = Both clockwise
4 = Both anticlockwise
5 = CH1 CW; CH2 ACW
Magnet holder
B = Bolt type
P = Plug type
M = Magnet only
Cable length
P5 = 0.5m
ELECTRICAL CONNECTIONS

500mm of 4-core cable: FDR-25 sheathed, with 55A spec (24AWG) cores

MAGNET MISALIGNMENT

2mm to 7mm Z axis air gap

2.00 X axis max offset

2.00 Y axis max offset

Note: any magnet offset or misalignment will increase non-linearity

When connecting the sensor, care should be taken with the correct connections. The sensor is provided with reverse polarity protection and short circuit protection between outputs (Yellow & White) to GND (Black), but if the outputs (Yellow & White) are connected to the supply this will result in device failure.

MAGNET HOLDER OPTIONS

ELECTRICAL ANGLE

Cable colour Description
Red + V Supply
Yellow Output 1
White Output 2
Black 0V Supply (GND)

Output increases with CW or ACW rotation viewed on sensor face - depending on selected order code
CONTACTLESS ROTARY POSITION SENSORS
The Penny+Giles contactless rotary position sensors have been specially developed to provide maximum performance under extremes of temperature, humidity, vibration, shock and immersion. Using the latest advances in 12bit Hall effect sensing technology, this expanded range of new generation sensors are factory programmed to provide the user with a wide range of previously unavailable options, including single or dual redundant outputs, clockwise or anticlockwise rotation and measurement angles from 0-20° to 0-360° in 1° increments.

This sensor range is ideally suited to operate in extremely hostile applications that are typical in motorsport, off-road specialist vehicles, military vehicles and heavy industrial machinery.

Contactless magnetic rotary sensor IC

The NRH/TPS/SRH series use a high performance, factory programmable 12bit magnetic rotary sensor IC that includes integrated Hall elements and digital signal processing. The angular position information is provided by a magnet integrated with the sensor’s shaft, or supplied separately. The sensor provides a pulse width modulated signal or an absolute analog voltage signal. Most models are designed to operate from either a 5Vdc regulated or 9-30Vdc unregulated supply, with a high stability circuit and EMC immunity to 100V/m.

Features

- Contactless technology
- Absolute analog or digital (PWM) output
- Measuring range from 20° to 360° in 1° increments
- Single or Dual outputs
- Temperature error less than 50ppm/°C
- Rugged housing and shaft designs
- Protection up to IP69K
- Choice of shaft attachments and mountings
- Rapid despatch of any option
- CE approved

Benefits

- Long life and impervious to dither vibration
- No loss of position on power down
- Maximum sensitivity in all applications
- Optional redundant output for safety critical applications
- Maximises system accuracy over temperature range
- Suitable for extreme environments
- Operation in hostile environments including pressure washing
- Interchangeable with existing installations
- Eliminates customer inventory
- Confidence in EMC performance

Design Statement

The design of models SRH501P and SRH502P are subject to Community Registered Design No 000961610-0001.

The majority of our designs include an input protector circuit (Patent not shown).
Innovative, rugged designs - superior protection

All models in our range have been designed to offer the best combination of materials and mounting styles that ensure survivability in the most rugged applications. We use sealing systems and cable connections that offer superior protection against the most hostile of operating conditions.

Impressive environmental capability

Designed with 21st century applications in mind most of our models can withstand operating temperatures from -40°C to +140°C (+170°C for 72 hours with our NRH and TPS models) and have been tested to withstand severe shock and vibration. All sensors have protection to at least IP68 rating, with some models offering protection to IP69K. With an EMC immunity of 100V/m, these position sensors are ready for the harshest applications.

Superior performance

This range of sensors has an impressive performance specification and most can operate from a 5Vdc regulated or 9 – 30Vdc supply. Outputs can be PWM or analog voltage (nominal 0.5 - 4.5Vdc) over the measurement range, with clockwise or anticlockwise shaft rotation. A choice of 341 different electrical angles from 20° to 360° are possible. 12 bit resolution (0.025%) is available over the selected measuring range, with a non-linearity better than ±0.4% and temperature stability better than ±50ppm/°C. The sensor’s analog output option has a very low output noise level of less than 1mV rms.

World leading availability

All models have been ‘designed for manufacture’ which enables assembly in state-of-the-art manufacturing cells. This means that we can supply any of the configurations possible from the options offered, in a matter of days from ordering. This allows OEMs to reduce or eliminate their inventory, and call on Penny+Giles to supply ‘on demand’.

Performance assured*

Penny+Giles product development process includes exhaustive qualification testing to ensure that performance specifications published in our product brochures and technical data sheets are backed by real-life test evidence. This is our assurance to you that our designs have been tested at these parameters.

* The qualification and suitability of these products in any customer specific application is the responsibility of the customer, unless otherwise agreed with Penny+Giles.

Selection Guide

Penny+Giles offers the widest choice of options to suit your unique application. We can also offer a custom design service if one of our standard models does not suit your requirements.

NRH280DP
- Dual output
- 6.5mm deep with metal flange
- Separate magnet assembly
- Sealed to IP69K
- Raychem™ DR25 cable

NRH285DR
- Dual input/dual output version of NRH280DP
- 5Vdc operation only

SRH220DR
- Dual input/dual output
- 28 x 38mm body with crush proof flange
- Sealed to IP68
- Integrated connector

SRH280P
- Single output
- 28mm body with crush proof flange
- Three shaft styles
- Sealed to IP68

SRH280DP
- Dual output
- Raychem™ DR25 cable
- 28mm body with crush proof flange
- Three shaft styles
- Sealed to IP68

TPS280DP
- Dual output
- D drive
- Sealed to IP68
- 25mm body with crush proof flange
- Raychem™ DR25 cable+connector

SRH501P
- Single output
- 87.5mm mounting flange
- Marine grade alloy housing
- Sealed to IP69K

SRH502P
- Dual output
- 87.5mm mounting flange
- Marine grade alloy housing
- Sealed to IP69K

SRH880P
- Single output
- 88 mm body
- Aluminum or stainless steel housing
- Sealed to IP68M
The information contained in this brochure on product applications should be used by customers for guidance only. Penny+Giles Controls Ltd makes no warranty or representation in respect of product fitness or suitability for any particular design application, environment, or otherwise, except as may subsequently be agreed in a contract for the sale and purchase of products. Customer’s should therefore satisfy themselves of the actual performance requirements and subsequently the products suitability for any particular design application and the environment in which the product is to be used.

Continual research and development may require change to products and specification without prior notification.

All trademarks acknowledged.

© Penny+Giles Controls Ltd 2011